华为 达芬奇(麒麟990或将采用的达芬奇架构NPU到底是什么?一文带你读懂)

自6月份麒麟810发布之后,华为的又一“秘密武器”——达芬奇架构NPU成为行业热议焦点。目前Nova5、荣耀9X系列已经率先搭载了麒麟810,且无一例外均位于AI-benchmark跑分榜单前列,充分展示出这款NPU在AI计算力上的确十分强劲。

从目前曝光的信息来看,,9月6日新一代旗舰级芯片依旧会在德国IFA上亮相,名为麒麟990,很多业内人士预测这款芯片将搭载达芬奇架构NPU,以确保麒麟990保持行业领先的AI计算能力,同时赋能更多更具实时性的AI体验。

那么达芬奇架构到底是什么,为什么会被称为“秘密武器”,又将给麒麟990带来哪些卓越能力?我们今天就来深度解析一下。

达芬奇架构的核心优势是什么联通大流量卡?如何更好地赋能麒麟990?

达芬奇架构,是华为自研的面向AI计算特征的全新计算架构,具备高算力、高能效、灵活可裁剪的特性,是实现万物智能的重要基础。具体来说,达芬奇架构采用3D Cube针对矩阵运算做加速,大幅提升单位功耗下的AI算力,每个AI Core可以在一个时钟周期内实现4096个MAC操作,相比传统的CPU和GPU实现数量级的提升。

3D Cube

同时,为了提升AI计算的完备性和不同场景的计算效率,达芬奇架构还集成了向量、标量、硬件加速器等多种计算单元。支持多种精度计算,支撑训练和推理两种场景的数据精度要求,实现AI的全场景需求覆盖。

在如智能手机等实际端侧AI应场景中,AI算力与功耗的协联通大流量卡调是至关重要的,一般来讲更高的AI算力意味着更大的功耗,因此智能手机的续航常常使AI算力受限。而有了达芬奇架构NPU,这一状况将得到改善,如果麒麟990能够搭载达芬奇架构NPU,麒麟芯片或将再次迎来震动行业的算力升级。

DaVinci Core是如何实现高效AI计算的?

在2018年全联接大会上,华为推出AI芯片昇腾310,这是达芬奇架构的首次亮相,昇腾310相当于AI芯片中的NPU。其中,DaVinci Core只是NPU的一个部分,DaVinci Core内部还细分成很多单元,包括核心的3D Cube、Vector向量计算单元、Scalar标量计算单元等,它们各自负责不同的运算任务实现并行化计联通大流量卡算模型,共同保障AI计算的高效处理。

3D Cube矩阵乘法单元:算力担当

刚才已经提到,矩阵乘是AI计算的核心,这部分运算由3D Cube完成,Buffer L0A,L0B,L0C则用于存储输入矩阵和输出矩阵数据,负责向Cube计算单元输送数据和存放计算结果。

Vector向量计算单元:灵活的多面手

虽然Cube的算力很强大,但只能完成矩阵乘运算,还有很多计算类型要依靠Vector向量计算单元来完成。Vector的指令相对来说非常丰富,可以覆盖各种基本的计算类型和许多定制的计算类型.

Scalar标量计算单元:流程控制的管家

Scalar标量运算单元主要负责AI Core的标量运算,功能上可以看作一个小联通大流量卡CPU,完成整个程序的循环控制,分支判断,Cube/Vector等指令的地址和参数计算以及基本的算术运算等。

3D Cube计算方式,有哪些独特的优势?

不同于以往的标量、矢量运算模式,华为达芬奇架构以高性能3D Cube计算引擎为基础,针对矩阵运算进行加速,大幅提高单位面积下的AI算力,充分激发端侧AI的运算潜能。以两个N*N的矩阵A*B 乘法为例:如果是N个1D 的MAC,需要N^2(即N的2次方)的cycle数;如果是1个N^2的2D MAC阵列,需要N个Cycle;如果是1个N维3D的Cube,只需要1个Cycle。

(图中的计算单元的数量只是示意。实际可灵活设计)

华为创新设计的达芬奇架构将联通大流量卡大幅提升算力,16*16*16的3D Cube能够显著提升数据利用率,缩短运算周期,实现更快更强的AI运算。这是什么意思呢?举例来说,同样是完成4096次运算,2D结构需要64行*64列才能计算,3D Cube只需要16*16*16的结构就能算出。其中,64*64结构带来的问题是:运算周期长、时延高、利用率低。

达芬奇架构的这一特性也完美体现在麒麟810上。作为首款采用达芬奇架构NPU的手机SoC芯片,麒麟810实现强劲的AI算力,在单位面积上实现最佳能效,FP16精度和INT8量化精度业界领先,搭载这款SoC芯片的华为Nova 5、Nova 5i Pro及荣耀9X手机已上市,为广大消费者提供多联通大流量卡种精彩的AI应用体验。

更强算力的麒麟990,开启互联互通的智慧新场景

一直以来,麒麟芯片的AI实力之所以受到人们的认可,除了强劲的AI计算力领先行业,结合华为手机实现的众多应用场景也受到了高度赞扬。达芬奇架构作为华为自研架构,在应用适应性方面与华为的理念一脉相承,基于灵活可扩展的特性,达芬奇架构能够满足端侧、边缘侧及云端的应用场景,可用于小到几十毫瓦,大到几百瓦的训练场景,横跨全场景提供最优算力,麒麟990所使用到的只是端侧AI最基本的一部分。

并且,想要真正实现万物互联的AI生态,离不开广大的AI开发者,那么选择开发统一架构就是一个非常关键的决策了。对于广大开发者来说,基于达芬奇架构的统一性,在联通大流量卡面对云端、边缘侧、端侧等全场景应用开发时,只需要进行一次算子开发和调试,就可以应用于包括麒麟芯片在内的不同平台,大幅降低了迁移成本。

如今,我们体验最多的AI应用大多来源于智能手机,但对于整个AI生态来说,智能手机只是一个开端,未来更多的AI应用涌现、跨平台迁移才能真正实现无处不在的智慧生活。因此,如果麒麟990真的搭载了达芬奇架构NPU,不止是手机算力提升那么简单,同时还以AI之力加速万物互联的智慧时代的到来。

最后,据闻8月23日采用达芬奇架构的又一款“巨无霸”将正式商用发布,这就是最新款的AI芯片Ascend 910,同时与之配套的新一代AI开源计算框架MindSpore也将同时亮相,我们共联通大流量卡同期待。


友情提醒: 请添加客服微信进行免费领取流量卡!
QQ交流群:226333560 站长微信:qgzmt2

原创文章,作者:sunyaqun,如若转载,请注明出处:https://www.dallk.cn/63467.html

(0)
sunyaqunsunyaqun
上一篇 2024年10月20日
下一篇 2024年10月20日

相关推荐

发表回复

登录后才能评论