压电材料作为感知电力设备放电、振动等信号的关键材料,在电力设备振动监测、放电检测、探伤、温度测量、电压传感等领域得到广泛应用。
压电材料在压电传感器件中的应用多种多样,其核心在于机械能和电能的相互转换:压电材料受机械振动(压电振动传感器)、声波传导(压电声传感器)等机械外力作用时晶格形变,引起极化状态的变化,输出传感电信号,或通过对压电材料受电场作用产生的形变进行测量来反映电场大小(压电电压传感器)。
声波信号可较好地实现与电信号的耦合与相互转换。根据声波激励、传播和耦合方式的不同,压电声传感器可分为压电超声传感器、声表面波传感器、电声脉冲传感器、压力波传感器等。
1985年,T.Takada等提出大流量卡电声脉冲法(Pulsed Electro-Acoustic,PEA)用于测量空间电荷,其基本原理是在介质两端电极上加上电脉冲扰动源,介质中的空间电荷和电极界面都受到这一脉冲电场力作用而相应地产生声脉冲。利用压电电声脉冲传感器(通常为宽频带PVDF压电薄膜传感器)接收与测量这些声脉冲,即可获得介质内部空间电荷分布信息。
压电电声脉冲传感器普遍用于电缆空间电荷测量,如图1所示。研究人员在电缆半导电层外直接施加高压脉冲,实现了在高压长电缆中测量空间电荷。但由于目前超高压电缆为保证良好屏蔽特性采用电导率较高的外屏蔽半导电材料,此方法信噪比往往较低。
在此基础上,研究者采用将电缆外屏蔽层分段截断和将电缆外屏大流量卡蔽层电位悬空的方法,实现了全尺度电缆空间电荷测量。另有研究人员采用压电电声脉冲传感器测量材料中空间电荷量的变化,结合等温松弛电流理论和离散陷阱分布模型分析LDPE/SiO2、LDPE/ZnO、EP/SiO2等纳米复合材料中陷阱分布信息,为定量表征聚合物绝缘材料载流子陷阱参数提供重要依据。
图1 利用该种传感器测量电缆空间电荷
压电电声脉冲传感器的空间分辨率和灵敏度主要取决于电脉冲形状和压电传感器自身性能,降低电脉冲宽度和压电膜厚度可以有效提高传感系统分辨率。L.Galloy等用2ns窄脉冲扰动源,以厚度1.5μm的P(VDF-TrFE)材料作为压电传感器,获得46μm的空间分辨率;T.Maeno等大流量卡采用5ns窄脉冲和4μm厚PVDF薄膜传感器,获得约3μm的分辨率;K.Kumaoka等用0.6ns超窄脉冲,以厚度1μm的PVDF压电薄膜作为传感器,将分辨率大幅提升至1.6μm。
本文编自2021年第7期《电工技术学报》,论文标题为“压电材料与器件在电气工程领域的应用”,作者为姚睿丰、王妍 等。
友情提醒: 请添加客服微信进行免费领取流量卡!
QQ交流群:226333560 站长微信:qgzmt2
原创文章,作者:sunyaqun,如若转载,请注明出处:https://www.dallk.cn/10716.html